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The Phantom Derivative (PhD) method [Giacovazzo (2015), Acta Cryst. A71,

483–512] has recently been described for ab initio and non-ab initio phasing. It is

based on the random generation of structures with the same unit cell and the

same space group as the target structure (called ancil structures), which are used

to create derivatives devoid of experimental diffraction amplitudes. In this

paper, the non-ab initio variant of the method was checked using phase sets

obtained by molecular-replacement techniques as a starting point for phase

extension and refinement. It has been shown that application of PhD is able to

extend and refine phases in a way that is competitive with other electron-density

modification techniques.

1. Introduction

The theoretical basis of a new phasing method, the Phantom

Derivative (PhD) approach, has recently been published

(Giacovazzo, 2015; referred to in the following as Paper I).

According to this method, a large number of structures (called

ancil structures, from the Latin ancilla) with the same unit-cell

parameters and the same space group as the target structure,

uncorrelated with each other and uncorrelated with the target,

are randomly created. This may be achieved by the following

simple algorithm.

The atomic positions of each ancil structure are randomly

fixed by triples of random numbers in the interval (0, 1)

without any control of interatomic distances and angles, and

without any attempt to generate chemically consistent mole-

cular fragments. In the case where ancils with the same

scattering power as the target are preferred, the simplest

algorithm is the following. Let n1, n2, n3, . . . be the number of

atoms in the asymmetric unit of the target structure for atomic

species 1, 2, 3, . . . , respectively. Then, for each ancil structure,

n1 random atomic positions are associated with atomic species

1, n2 with atomic species 2, n3 with atomic species 3, etc.

It is also convenient for practical reasons to create ancils

with the same average thermal factor as the target. This may

be achieved by generating a Wilson plot using the target

diffraction data and then assigning the average thermal factor

thus found to all of the ancil atoms.

Let �a(j), j = 1, . . . , n, be the electron densities of the ancil

structures, and |Fa(j)| and ’a(j) be the corresponding ampli-

tudes and phases, both of which are perfectly known a priori.

Also, let � be the unknown electron density of the target

structure and let |F | and ’ be the corresponding amplitudes

and phases. The |F | values are known from a diffraction

experiment, while the ’ values are unknown.
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The PhD method aims to exploit the derivative electron

densities

�dðjÞ ¼ �þ �aðjÞ; j ¼ 1; . . . ; n; ð1Þ

to phase the target. Since the ancil structures are not real

structures (they are randomly generated) the derivative

structures are also unreal, and therefore no experimental

amplitude is available for them. This justifies the name the

Phantom Derivative method.

The Fourier transform of (1) gives

FdðjÞ ¼ F þ FaðjÞ: ð2Þ

At beginning of the phasing process, the values of |Fd(j)|, ’d(j)

and ’ are unknown. It is therefore impossible at this stage to

estimate the derivative amplitudes and phases by applying (2).

The PhD method aims to use the experimental diffraction

amplitudes of the target structure |F |, and the calculated

diffraction amplitudes and phases of the ancil structures |Fa(j)|

and ’a(j), to progressively provide better estimates of deri-

vative amplitudes and phases, from which better ’ estimates

should be progressively obtained. The method relies on a

probabilistic approach, working in reciprocal space and on the

following two algebraic conditions (see equation 1).

(i) For reflections for which |Fa(j)| � |F |, ’a(j) is a suffi-

ciently good approximation of ’d(j) and |Fa(j)| is a not too

rough an approximation of |Fd(j)|.

(ii) For reflections for which |F | � |Fa(j)|, ’ (even if

unknown) is sufficiently close to ’d(j) and |F | is not too rough

an approximation of |Fd(j)|.

(1) clearly suggests the qualitative correctness of statements

(i) and (ii). For example, if |F | = 0 then ’d(j) = ’a(j) and

|Fd(j)| = |Fa(j)|; if |Fa(j)| = 0 then |Fd(j)| = |F | and ’d(j) = ’. A

quantitative study of the errors (both in modulus and phase)

involved in the approximations (i) and (ii) has been performed

in paper I (see xx3 and 6), to which the reader is referred. We

only mention here that errors in the amplitudes are more

critical for the phasing process than phase errors, in agreement

with the principle stated by direct methods, according to which

phases are not lost in the diffraction experiments but are only

hidden in the amplitudes.

The PhD approach has been designed to be a fully ab initio

method because it only needs the experimental diffraction

amplitudes of the target structure. However, the approach

may also be used as a non-ab initio technique (see Paper I, xx8

and 11). This paper is dedicated to this second problem: we

will check the potential of PhD by applying it to cases in which

a model electron-density map is available from other phasing

methods. This non-ab initio problem is more easy to attack:

indeed, in this case the enantiomorph is perfectly determined

by the model (compared with the ambiguity that exists for ab

initio attempts), and ’ estimates are available for all of the

reflections (in contrast to the ab initio approach where only ’aj

phases, which are uncorrelated with ’, may be used). We will

apply PhD to a large number of test structures with variable

size and variable data resolution, the electron-density maps of

which are provided by molecular-replacement (MR) tech-

niques.

On the other hand, the PhD practice of using ancil struc-

tures that are completely uncorrelated with the target struc-

ture is maintained in our applications. We will verify whether

PhD, by using random ancil structures, is really useful for

driving the model phases closer to the target values. Thus,

favourable results in this paper may prove the founding PhD

conjecture: that random structures may be usefully employed

for phasing a given target structure.

In x2, we will adapt the so-called sum function (see x8 of

Paper I) to MR data and we will also optimize the various

parameters that influence its efficiency. In x3, we will present

and discuss the results obtained by applying PhD to the

selected test structures.

2. The theoretical basis of PhD for non-ab initio
approaches

Let us suppose that a model electron-density map �MR is

available at the end of an MR phasing procedure: |FMR| and

’MR are the corresponding calculated amplitudes and phases.

We will suppose that the density is not immediately inter-

pretable by automated model-building programs and that

electron-density modification (EDM) techniques (Cowtan,

1994, 1999; Abrahams, 1997; Abrahams & Leslie, 1996; Refaat

& Woolfson, 1993; Giacovazzo & Siliqi, 1997) are a necessary

additional step to complete the crystal structure solution. It is

not uncommon that even the most efficient EDM techniques

are unable to provide phases of sufficient quality for a

successful automated model-building process. Thus, new

approaches such as PhD are welcome if they prove to be able

to further reduce the average phase error corresponding to the

best available electron-density map.

Let �0 be the best electron-density map obtained by the

application of an effective EDM procedure to the best �MR

map produced by the MR approach: it may be considered as a

starting point for the application of PhD. |F0| and ’0 represent

the best amplitude and phase estimates obtained by Fourier

inversion of �0, respectively. The non-ab initio direct-space

PhD approach suggests the creation of n ancil structures with

the same unit cells and space group as the target structure and,

correspondingly, the calculation of n derivative model electron

densities,

�d0ðjÞ ¼ �0 þ �aðjÞ; j ¼ 1; . . . ; n: ð3Þ

If these n derivatives are summed into the sum function (see

x8 of Paper I),

�s ¼
Pn

j¼1

�d0ðjÞ ¼ n�0 þ
Pn

j¼1

�aðjÞ; ð4Þ

�s cannot provide any additional information on the target

structure: indeed, the ancil structures are uncorrelated with

each other and are uncorrelated with the target. Accordingly,

the ancil contribution on the right-hand side of (4) is confined

to the background of the sum map, and the map signal will

coincide with an emphasized �0 map. Expectations change if,

in agreement with Paper I, each derivative electron density is

submitted to EDM before being summed, and also if the
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corresponding sum function is itself submitted to EDM. Then,

instead of (4), (5) should be used,

�s ¼
Pn

j¼1

�dmodðjÞ; ð5Þ

where �dmod(j) is the jth EDM-modified derivative electron

density. In turn, each �dmod(j) may be interpreted as the sum of

the original ancil densities �a(j) with the jth modified electron

density of �0 [called �0mod(j) on the right-hand side of equa-

tion 6],

�s ¼
Pn

j¼1

�0modðjÞ þ
Pn

j¼1

�aðjÞ: ð6Þ

It may be expected that each �0mod(j) will show structural

features that were originally present in �0 plus additional

structural features generated by the EDM procedure.

Summing the n �0mod(j) maps will increase the contrast

between a better target model and the background created by

the ancil densities. A subsequent application of EDM to �s

may improve the current model even further.

The main problem in the application of (6) is that the

derivative amplitudes are not experimentally known, and

therefore the usual EDM procedures cannot be applied to

refine derivative electron-density maps. In accordance with

Paper I, we will use hybrid Fourier syntheses employing target

amplitudes and derivative phases as EDM tools: the hope is

that the target amplitudes will drive the derivatives phases

closer to the target values.

In Paper I, a slightly different approach was also suggested.

It is possible to write (6) as sum of difference maps,

Pn

j¼1

�0modðjÞ ¼
Pn

j¼1

½�dmodðjÞ � �aðjÞ�; ð7Þ

which therefore should be submitted to EDM procedures. The

two approaches are algebraically equivalent, but in practice

they may provide slightly different results according to the

behaviour of the EDM procedure. Indeed, in the case of (6),

EDM is applied to a map that is expected to be positive

everywhere; in the case of (7) the map may be negative in

more extended regions of the unit cell.

(6) and (7) have a reciprocal-space counterpart which is

summarized below. Taking the Fourier transform of (6) and (7)

provides the amplitudes and phases of the new model, i.e.

Fds ¼
Pn

j¼1

FdmodðjÞ ¼
Pn

j¼1

F0modðjÞ þ
Pn

j¼1

FaðjÞ ð8Þ

and

Pn

j¼1

F0modðjÞ ¼
Pn

j¼1

½FdmodðjÞ � FaðjÞ�; ð9Þ

respectively, where the F values are obtained by Fourier

inversion of the corresponding electron-density maps. For any

given reflection (hkl) the ’a(j) values, for j = 1, . . . , n, are

expected to be randomly distributed on the trigonometric

circle so that the sum of the Fa(j) vectors, for j = 1, . . . , n,

is expected to be distributed about a null vector. On the

contrary, F0mod(j) vectors are light modifications of the target

structural model and therefore will play a dominant role.

It is immediately clear that non-ab initio PhD is not an

alternative to the present EDM methods and is itself an EDM

method which has to be used in cooperation with other EDM

techniques, possibly to overcome their present limitations.

This belief will guide the applications described in this paper.

The practical use of the non-ab initio PhD method requires

the prior optimization of various parameters and choices

between alternative variants. We refer to the following.

(i) The number of random ancil structures. In Paper I it was

guessed that 100–300 ancil structures would be necessary for

ab initio phasing. It should not be surprising that the simpler

non-ab initio PhD approach should require a smaller number

of ancils. We checked several n values and we found that in

most cases 15 ancils are sufficient to significantly improve the

initial structural model. Increasing this number improves the

result but in a marginal way and with a larger computational

cost. Thus, in all of our tests we will use n = 15.

(ii) The phasing process may be cyclical. As soon as the

approach outlined above has generated a new target electron-

density model (�1), this density may be the starting point for a

new application of PhD using other n additional and randomly

created ancil structures. In this way, a second target model (�2)

may be obtained, and so on: in this cyclical approach each

target model �i is the starting point for cycle i + 1.

This procedure is not very rewarding, probably because

some useless structural features that are obtained in the ith

cycle are transmitted to cycle i + 1. The general effect is the

following: the target phase estimates become stationary in

spite of the larger computational cost. This approach has been

abandoned.

(iii) Our preferred technique is the following. 15 ancil

structures are randomly generated and are subdivided into

three batches of five. PhD is then separately applied to each

batch: at the end of the procedure Fbat(i), i = 1, 2, 3, are

obtained, where Fbat(i) is the best target structure-factor

estimate arising from the ith batch. The final target phase

estimate for a given reflection h arises by applying the tangent

formula to the three Fbat(i) estimates. As in (ii), a larger

number of ancil structures may be used, but the advantages

are marginal.

(iv) It may be worthwhile noting that n ancil structures may

be used to generate both the n derivative densities (6) and the

following ones,

���s ¼
Pn

j¼1

���dmodðjÞ ¼
Pn

j¼1

�0modðjÞ �
Pn

j¼1

�aðjÞ: ð10Þ

���s is now negative in extended regions of the unit cell. The

�a(j) densities are again randomly distributed and therefore

become, as in (6), part of the background of the sum map. We

verified that the use of (10) leads to results that are very

similar to those obtained via (6) and we therefore renounced

the use of (10).

(v) We separately checked the efficiency of (6) and (7) on all

of our test structures. The corresponding results were very
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similar: a slightly smaller phase error may be obtained by

combining both of the estimates, but the increased computing

time did not encourage us to follow this practice. Thus, in all of

our tests we applied (6) only.

(vi) We also checked the usefulness of the reciprocal PhD

variant involving the use of (8) or (9). The results were greatly

inferior to those obtained via (6) and (7): this result confirms

the historical superiority of direct-space EDM procedures

with respect to reciprocal-space variants.

(vii) The general PhD theory allows great freedom in the

choice of the scattering power of the ancil structures. In the

case of ab initio phasing, special considerations suggest the use

of ancils with a scattering power equal to that of the target. In

our non-ab initio case the choice is more free: we checked the

efficiency of PhD by using ancils with scattering powers that

were smaller than, equal to or larger than that of the target.

The results are not very different, provided that the ratio of

the scattering powers (ancil:target) is between 0.3 and 1.5. We

choose ancils with a scattering power that was half of that of

the target for our tests.

(viii) In analogy with Patterson deconvolution methods, we

also applied the PhD procedure by replacing the sum function

by the minimum function (which takes the minimum value

calculated for the derivative electron densities pixel by pixel).

The results were slightly worse than those obtained via the

sum function, which remains our standard choice.

Thus far we have mentioned EDM procedures without

explicitly specifying the technique and the programs that we

use. Phase extension and refinement are performed by two

EDM procedures: DM (Cowtan, 1994, 1999; available from

CCP4; Winn et al., 2011) and DSR (Giacovazzo & Siliqi, 1997;

Caliandro et al., 2014). Both apply real-space constraints to the

electron-density map to meet the expected protein features.

DM is very popular in protein crystallography and is highly

effective at resolutions that are worse than atomic, but is

inefficient when the data resolution is better than 1.4 Å (for

specific test cases, see Carrozzini et al., 2013). It automatically

stops when a suitable figure of merit overcomes a given limit.

DSR is more suitable for high-resolution data (e.g. up to

about 1.8 Å) and will only be used in our tests for the two test

structures with data at atomic resolution.

3. Applications

In order to check the usefulness of the non-ab initio PhD

variant, we used 24 test structures, a subset of the 45 structures

used by Carrozzini et al. (2013) for checking an MR pipeline.

The selected set only involves the cases for which the MR step

provided phase errors larger than 50�. Their Protein Data

Bank (PDB) codes are quoted in Table 1, together with their

data resolution (RES) and the number of residues in the

asymmetric unit (NresT). h|�’MR|i is the average phase error

at the end of the MR step.

We extended and refined the phases by the default use of

DM: the h|�’DM|i column in Table 1 shows the DM results in

terms of average phase error. This column gives a state-of-the-

art standard with which to compare the efficiency of PhD. The

PhD procedure described in x2 was then applied to the phases

refined by DM to check whether they may subsequently

improve. The corresponding average phase errors are shown

in the h|�’PhD|i column. We notice the following.

(i) DM used in default mode worked quite usefully in most

of the cases: the phases were efficiently extended and refined,

and in most of the cases h|�’DM|i is significantly better than

h|�’MR|i. DM is, however, highly inefficient when applied to

PDB entries 1dy5 and 1bxo, the two test structures with

atomic resolution data.

(ii) PhD starting from the DM phases significantly

improved their quality. In all cases h|�’PhD|i � h|�’DM|i, and

in most cases the difference is large: the average phase error is

in some cases reduced by 20�. Correspondingly (for brevity we

do not give the figures), the map correlation between the

target electron-density map corresponding to the published

structure and the final density map obtained by PhD is

significantly larger than that with the map obtained by DM.

This makes the automatic interpretation of the density maps

by automated model-building programs (AMB) more easy.

The obvious conclusion is as follows: even if PhD may

conveniently start from MR phases, it may be more useful

when applied to phases refined by DM. It introduces infor-

mation that is not available for DM into the refinement step.

We now observe that the efficiency of any EDM technique

depends on the quality of the initial phases. Generally

speaking, if the phases are too far away from the true values

then EDM techniques are not able to reduce the phase error

(indeed, EDM techniques are not ab initio techniques). If the
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Table 1
The PDB code (CODE) of the target structure, the data resolution
(RES), the number of residues in the asymmetric unit of the target
(NresT), the mean phase error obtained by MR (h|�’MR|i), the mean
phase error obtained by applying DM to the set of observed reflections
phased by MR (h|�’DM|i) and the mean phase error obtained by applying
PhD to the reflections phased by DM (h|�’PhD|i) for each test structure.

CODE RES (Å) NresT h|�’MR|i (�) h|�’DM|i (�) h|�’PhD|i (�)

1dy5 0.87 248 74 76 21
1bxo 0.90 323 74 71 21
2fc3 1.54 124 54 49 35
1tgx 1.55 180 58 54 41
2a46 1.65 217 69 57 37
1lys 1.72 258 53 51 45
1cgo 1.79 127 74 66 55
2otb 1.79 432 58 54 42
1kqw 1.80 134 59 54 43
2sar 1.85 192 52 47 37
1lat 1.90 145 70 68 66
1e8a 1.95 175 69 57 48
2f53 1.99 811 59 52 45
2ayv 2.00 148 53 48 43
2pby 2.07 1155 79 75 72
2f8m 2.09 472 64 57 51
1yxa 2.10 740 74 69 66
2f84 2.10 323 55 49 44
1cgn 2.15 125 73 65 57
1xyg 2.19 1380 64 58 54
2a4k 2.30 439 60 55 47
2b5o 2.50 584 50 49 45
1ycn 2.51 619 56 50 44
2iff 2.58 555 62 61 61



initial set of phases is of very high quality, EDM techniques

are inefficient and superfluous (in these conditions the phase

error may only decrease if molecular models rather than

electron-density maps are used).

It may thus be of interest to check whether PhD may

subsequently improve the quality of more deeply refined sets

of phases, for example phases already treated with VLD

(Burla et al., 2011) and subsequently refined by free lunch

(referred to as FL in the following; Caliandro et al., 2005, 2007)

techniques. We will refer to this method as VLD + FL.

For the benefit of the reader, we recall that VLD is based on

the difference Fourier synthesis

Eq ’ ðmR� RpÞ expði’pÞ;

where m is a suitable weight and R and Rp are the normalized

structure-factor moduli corresponding to the observed and

calculated model amplitudes, respectively. Eq, obtained by

Fourier inversion of the difference electron-density map, is

then added to Ep to estimate the phase of a new model elec-

tron density via the tangent formula

tan ’ ¼
Rp sin ’p þ wqRq sin ’q

Rp cos ’p þ wqRq cos ’q

;

where wq is a suitable weight. This new density is then

resubmitted to additional DM cycles.

The application of FL requires the extrapolation of the

amplitudes and phases of a large number of non-measured

reflections both beyond and behind the experimental resolu-

tion. The extrapolation limit is determined by the observed

data resolution (it makes no sense to extrapolate reflections

up to 1 Å resolution when the observed resolution is 3 Å).

Indeed, the number of extrapolated reflections actively used

in the electron-density maps is never greater than twice the

number of observed reflections.

As in our previous papers, the VLD + FL approach implies

that the best map produced by VLD is the initial map for the

FL step. It is also useful to notice that VLD + FL is a short

abbreviation of the sequence DM–VLD–DM–FL, since DM is

an important step of the technique (see Carrozzini et al., 2013).

In additional calculations, as described below, instead of

applying DM to MR phases we apply VLD + FL, and we then

use the final phases as a starting point for PhD. The VLD + FL

average phase errors obtained by Carrozzini and coworkers

for our test structures are shown in Table 2 (in the h|�’V+F|i

column). A simple comparison of the h|�’V+F|i column in

Table 2 with the h|�’DM|i column in Table 1 suggests the

greater efficiency of VLD + FL with respect to the simple

application of DM: indeed, in most of the cases h|�’V+F|i is

significantly better than h|�’DM|i.

To check whether PhD may be able to subsequently

improve a set of phases previously refined by VLD + FL, we

integrated the two techniques: the resulting approach will be

referred as VLD + FL + PhD. The PhD step includes a final

application of FL at its end.

At the end of the PhD procedure we have two different

(although correlated) phase estimates for each reflection: the

value obtained at the end of the PhD procedure and the initial

value, which is also expected to be of high quality. The two

estimates are then combined via a tangent technique: the

corresponding average phase error for each test structure is

reported in Table 2 in the h|�’V+F+P|i column. We notice the

following.

(i) In some cases h|�’V+F|i is too small for further signifi-

cant improvements (PDB entries 1dy5 and 1bxo).

(ii) In most cases h|�’V+F+P|i < h|�’V+F|i by a few degrees,

but in some cases the difference is considerable. The closeness

between the two methods is also owing to the common use of

tools such as VLD and FL.

(iii) Some structures (PDB entries 1lat, 2pby, 1yxa, 1xyg and

2iff) are resistant to any effort. Neither VLD nor PhD are able

to obtain average phase errors that are better than those

obtained by DM. The reason for this is not completely clear,

but some deeper insight is given below.

(iv) The PhD average phase errors obtained using the

VLD-refined phases as initial phases are significantly smaller

than those obtained when PhD starts from DM-refined

phases. Accordingly, the quality of the starting phases strongly

influences the quality of the final PhD phases.

The above results suggest that the most effective procedure

for refining MR phases is to combine DM with the VLD, FL

and PhD approaches. However, we have to check whether the

phase improvement obtained by this method is significant in

terms of whether it would allow a structure to be solved when

it remains unsolved by applying DM techniques only. Let

CORRDM, CORRPhD and CORRV+F+P be the correlation

values between the electron-density map corresponding to the

published structure and the maps obtained by the application
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Table 2
The PDB code (CODE), the mean phase error obtained by applying
VLD + FL to the set of reflections phased by MR (h|�’V+F|i) and the
mean phase error obtained by the supplementary application of PhD to
the phases refined by VLD + FL (h|�’V+F+P|i) for each test structure.

CODE h|�’V+F|i (�) h|�’V+F+P|i (�)

1dy5 22 21
1bxo 20 19
2fc3 35 33
1tgx 41 38
2a46 31 26
1lys 44 43
1cgo 58 49
2otb 42 39
1kqw 41 39
2sar 37 34
1lat 66 66
1e8a 49 45
2f53 46 46
2ayv 43 43
2pby 72 72
2f8m 51 49
1yxa 67 66
2f84 45 45
1cgn 57 52
1xyg 54 54
2a4k 45 44
2b5o 43 44
1ycn 44 44
2iff 63 64



of the three procedures defined by the subscripts. Also let

RfDM, RfPhD and RfV+F+P be the free R-factor values (Brünger,

1992) obtained by applying the automatic model-building

program Buccaneer (Cowtan, 2006) to the final sets of phases

obtained by the same three procedures. We assume that Rf

values smaller than 0.40 may correspond to solved structures,

while Rf values significantly larger than 0.40 indicate unsolved

structures. The results are shown in Table 3, where we give the

corresponding CORR and Rf values for each test structure.

The reader will immediately observe that the map correla-

tions increase when DM is replaced by DM + PhD and when

this is replaced by DM + VLD + FL + PhD: the new proce-

dures therefore improve the quality of the final electron-

density maps.

It may also be noticed that eight test structures may remain

unsolved when only DM is applied (i.e. PDB entries 1dy5,

1tgx, 1cgx, 1lat, 2pby, 1yxa, 1cgn and 2iff). For 1tgx the value of

RfDM is however not significantly larger than 0.40: indeed, the

phase error corresponding to the Buccaneer structural model

is 41� and the coverage index is 0.82. The remaining seven

structures have a final phase error of greater than 55�.

When PhD is combined with DM only five test structures

show RfPhD values larger than 0.40 (i.e. PDB entries 1lat, 2pby,

1yxa, 1cgn and 2iff). For 1cgn RfPhD is not much greater than

0.40: indeed, the phase error corresponding to the Buccaneer

structural model is 47� and the coverage index is 0.88.

The number of structures with RfV+F+P greater than 0.40

decreases to four (i.e. PDB entries 1lat, 2pby, 1yxa and 2iff):

RfV+F+P for 1cgn is now 0.27 and the corresponding Buccaneer

coverage index is 0.95.

Thus far, we have described procedures which may also be

applied to sets of phases generated by any other ab initio or

non-ab initio approach: the procedures only need a model

electron-density map and the observed diffraction amplitudes.

Indeed, to start the phase-refinement processes described

above the model electron-density map may be Fourier

inverted to obtain model phase values which will constitute

the starting point for the VLD + FL + PhD procedure. In fact,

a molecular model is not necessary.

MR, however, ends with a molecular model that is suitably

oriented and translated: the question is whether the avail-

ability of a molecular model may be used to subsequently

reinforce the VLD + FL + PhD refinement procedure.

In a recent paper (Carrozzini et al., 2015) aiming at solving

via crystallographic techniques a set of structures originally

solved (DiMaio et al., 2011) by combining MR with a suite

using physically realistic all-atom potential functions (Rosetta;

see Das & Baker, 2009), an extraordinarily intensive use of

REFMAC (Murshudov et al., 2011) is described. Such inten-

sive application is one of the phasing tools which allowed

Carrozzini and coworkers to succeed (without Rosetta) in

phasing most of the difficult test structures proposed by Di

Maio and coworkers. The main problem in such intensive use

is to decide at which REFMAC cycle refinement should be

stopped, otherwise overrefinement will usually lead REFMAC

to diverge.

For the benefit of the reader, we report the basic criterion

adopted by Carrozzini et al. (2015). The crystallographic

residual Rcryst is calculated every 15 cycles. At cycle 15(n + 1)

Rcryst is compared with that calculated at cycle 15n. If the value

at cycle 15(n + 1) is larger, and if the average absolute

difference between the phase values at cycle 15n and the

phase values at cycle 15(n � 1) is less than 3�, then the

program stops and the phases obtained at cycle 15n are
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Table 3
CORRDM, CORRPhD, CORRV+F+P and the corresponding free R values
for each test structure.

CODE CORRDM RfDM CORRPhD RfPhD CORRV+F+P RfV+F+P

1dy5 0.67 0.45 0.95 0.24 0.95 0.28
1bxo 0.64 0.29 0.95 0.25 0.96 0.25
2fc3 0.80 0.36 0.90 0.30 0.91 0.29
1tgx 0.76 0.43 0.85 0.36 0.86 0.33
2a46 0.69 0.38 0.88 0.33 0.94 0.29
1lys 0.78 0.33 0.82 0.27 0.83 0.26
1cgo 0.54 0.49 0.69 0.36 0.74 0.31
2otb 0.78 0.35 0.87 0.32 0.88 0.34
1kqw 0.74 0.32 0.83 0.36 0.85 0.39
2sar 0.79 0.30 0.86 0.28 0.88 0.28
1lat 0.51 0.52 0.53 0.56 0.52 0.59
1e8a 0.65 0.34 0.78 0.31 0.81 0.29
2f53 0.80 0.34 0.84 0.35 0.82 0.35
2ayv 0.83 0.34 0.87 0.34 0.87 0.32
2pby 0.49 0.48 0.50 0.53 0.50 0.52
2f8m 0.70 0.33 0.75 0.32 0.76 0.33
1yxa 0.55 0.50 0.58 0.50 0.59 0.52
2f84 0.77 0.34 0.81 0.32 0.81 0.31
1cgn 0.60 0.56 0.68 0.46 0.73 0.27
1xyg 0.69 0.30 0.72 0.29 0.71 0.31
2a4k 0.71 0.37 0.78 0.33 0.80 0.30
2b5o 0.78 0.33 0.82 0.32 0.82 0.33
1ycn 0.77 0.32 0.82 0.32 0.81 0.30
2iff 0.54 0.47 0.52 0.47 0.48 0.47

Table 4
h|�’MR|i (as quoted in Table 1) and the average phase errors h|�’R|i,
h|�’R+V+F|i and h|�’R+V+F+P|i for each test structure.

CODE h|�’MR|i (�) h|�’R|i (�) h|�’R+V+F|i (�) h|�’R+V+F+P|i (�)

1dy5 74 21 21 22
1bxo 74 34 34 19
2fc3 54 34 33 31
1tgx 58 36 35 34
2a46 69 40 37 23
1lys 53 29 29 32
1cgo 74 57 53 35
2otb 58 37 36 32
1kqw 59 35 34 31
2sar 52 44 41 33
1lat 70 61 59 50
1e8a 69 40 39 36
2f53 59 30 29 36
2ayv 53 33 32 33
2pby 79 45 43 35
2f8m 64 44 42 37
1yxa 74 45 43 38
2f84 55 37 36 36
1cgn 73 49 46 30
1xyg 64 42 40 38
2a4k 60 37 35 31
2b5o 50 38 37 36
1ycn 56 33 32 33
2iff 62 65 64 79



restored. The above criterion often allows a large number of

REFMAC cycles, even greater than 150, but owing to the

robustness of the REFMAC algorithms this overwork often

leads to significant phase improvement.

A new procedure then may be invoked that is specifically

designed for MR cases. The first step of the refinement

procedure involves the intensive application of REFMAC to

MR phases. Let h|�’R|i be the average phase error corre-

sponding to this step. The phases from the last cycle of

REFMAC are then submitted to VLD + FL, thus producing

new phase estimates with a mean error denoted h|�’R+V+F|i.

Alternatively, the REFMAC phases are submitted to VLD +

FL + PhD, which ends with new phase estimates: let

h|�’R+V+F+P|i be their average phase error (again the DM step

is contained in the VLD notation). For each test structure in

Table 4, we report for the benefit of the reader the value

h|�’MR|i already quoted in Table 1 and the average phase

errors h|�’R|i, h|�’R+V+F|i and |�’R+V+F+P|i. We notice the

following.

(i) In no case does our algorithm allow REFMAC to

diverge: for almost all of the test structures the phase

improvement is surprisingly high. The number of cycles varies

from a minimum of 30 to a maximum of 180, which is reached

for PDB entry 2pby: in this last case the large number of cycles

is necessary to decrease the average phase error from 79 to

45�. However, the reader should consider that in 11 cases the

algorithm stops REFMAC at a cycle number equal to or

greater than 90.

(ii) All of the structures benefit by the intensive use of

REFMAC, including four of the five resistant test cases (PDB

entries 1lat, 2pby, 1yxa and 1yxg). Only 2iff does not improve,

for the following reason. The scattering power of the 2iff MR

model is a small percentage (about 23%) of that of the target:

therefore, the use of REFMAC may improve the geometry of

the monomer but cannot generate other monomers.

(iii) The application of DM to REFMAC phases lowers the

average phase error by a few degrees. A significant improve-

ment with respect to the DM result is obtained by applying

VLD + FL + PhD to REFMAC phases. The average phase

error for all of the test structures is now always smaller than

40� (except for 2iff).

It may now be appropriate to apply Buccaneer to the

structures refined by REFMAC + VLD + FL + PhD to verify

its efficiency with the model maps provided by this procedure.

For the sake of brevity, we do not report its full outcome in

Table 3: indeed, the final average phase errors shown in

Table 4 are in general very small, and in these cases Buccaneer

easily succeeds. We only mention the key values obtained for

the four test structures (PDB entries 1lat, 2pby, 1yxa and 2iff)

that remained unsolved when the procedure VLD + FL + PhD

was applied. Only two structures remain now unsolved, 1lat

and 2iff, with Rf values of 0.51 and 0.50, respectively.

However, 1lat now has a better model, with a coverage index

of 0.48 compared with 0.12 obtained via VLD + FL + PhD and

a mean phase error of 61� compared with 76�. 2pby and 1yxa

are now fully solved: the Rf values are 0.27 and 0.30, respec-

tively, with corresponding coverage indices of 0.96 and 0.94.

4. Conclusions

The PhD method has been tested in its non-ab initio variant.

We selected a set of test structures for which the average phase

error obtained via MR is larger than 50� and we checked

whether PhD is able to reduce the average phase error and

therefore to improve the quality of the model. We compared

the efficiency of PhD with other EDM techniques such as DM

and VLD. Our calculations clearly show the capacity of PhD

to extend and refine phases in a manner that is competitive

with any other current approach. Indeed, the best results were

obtained by integrating PhD with the DM, VLD and FL

techniques.

A procedure specifically designed for MR has been tested:

it involves intensive use of REFMAC, followed by DM, VLD,

FL and PhD steps. The procedure improves the previous

results even further, and may be considered the most effective

technique to apply when well oriented and translated mole-

cular models are obtained by MR.

Finally, a few conclusive words about the role of this paper.

Its experimental results prove the founding conjecture of

Paper I: that structures that are completely uncorrelated

among themselves, and are uncorrelated with the target, are

able to improve the current target phase estimates. Owing to

such a result, this conjecture may be now transformed into a

formal statement, which establishes the following principle:

information additional to that contained in the target

diffraction amplitudes may be found in structures that are

completely uncorrelated with the target.

This is the most radical way to increase the information

contained in the diffraction data: milestones on this pathway

are MR (information contained in a molecular fragment

similar to the target molecule), SIR/MIR (additional infor-

mation provided by the derivative diffraction data), SAD/

MAD (a further case of isomorphism) and free lunch (addi-

tional information obtained by the extrapolation of non-

measured amplitudes). It may therefore be foreseen that PhD

may find useful applications when combined with any ab initio

or non-ab initio phasing technique, including EDM techniques

other than DM: this paper just opens the way.

References

Abrahams, J. P. (1997). Acta Cryst. D53, 371–376.
Abrahams, J. P. & Leslie, A. G. W. (1996). Acta Cryst. D52, 30–42.
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